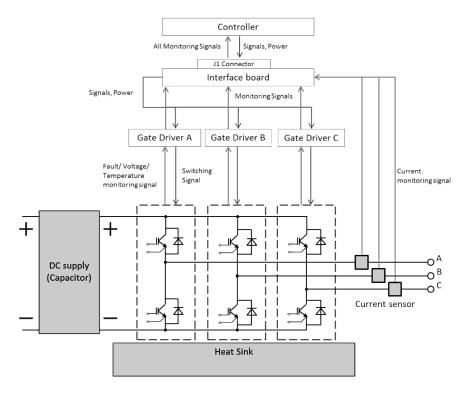
Level 3M: 100 kW DC-AC Inverter

Key Data

3 Phase Inverter Configuration Rated output: 100kW

General Information


Standard configuration includes: (3) IGBT Modules, (3) Gate Drive Boards, (3) Current Sensors, Interface Board, Heat Sink,

Integrated DC bus Capacitor, 750uF or 1500uF and Integrated Controller

Topology	3 Phase Inverter (B6I)
Application / Modulation	Inverter / Sine or Custom
Load Type	Resistive, Inductive
Standards	UL certification pending
Cooling	Forced Air (fan optional)
Markets	Solar, Wind, UPS, Battery Storage, Motor Control,
	Power Conversion Applications.
Current Sensors	LEM – HASS 400-S
IGBT Modules	FUJI – Electric DualXT – 2MBI450VN-120-50
Gate Drive Boards	AgileSwitch – AS2-20D1ANPU-FE450VN12
Interface Board	AgileSwitch – ASI-PS
Heat Sink	Methode – High Performance Extruded
DC Link Capacitors	Methode – Capacitor Bank
Controller	National Instruments – Single-Board RIO General
	Purpose Inverter Controller (GPIC)

SmartPower Stack Topology

Prepared by: Yueheng Guo	Version: v1.0
Approved by: Albert Charpentier	Effective Date: 2/14/2013

Level 3M: 100 kW DC-AC Inverter

Note: Typical Operating Conditions:

 V_{DC} =700, V_{AC} =480, F_{SW} =5kHz, $Cos(\phi)$ = .9, airflow = 485 m³/hr, air temp = 25°C, I_{AC} =150 A_{RMS}

Electrical Characteristics

DC Link	Notes	Symbol	min	typ	max	unit
DC link Voltage	Continuous Operation	V_{DC}	280		900	V
Max Surge Voltage	2 min, non-operational				1200	V
Overvoltage Shutdown	Configurable		700	900	1000	V
Capacitance	See separate datasheet for details	Met	Methode Capacitor Bank datasheet			
Capacitor ESL	See separate datasheet for details	Met	Methode Capacitor Bank datasheet			

AC Data	Notes	Symbol	min	typ	max	unit
Voltage		V _{AC}	280		900	V _{rms}
Continuous Current	See Typical Operating Conditions	I _{AC}			400	A _{rms}
Power Loss	See Typical Operating Conditions	P _{loss}		~ 1800		W
Switching Freq ¹	See Typical Operating Conditions Max frequency is @ 50°C	F _{SW}		5	10	kHz
Power Factor	Leading or Lagging	Cos(φ)	0		1	
Surge Current	Max for 10 μS				900	A _{rms}

General Data	Notes	Symbol	min	typ	max	unit
Insulation Test Voltage				4		kV

Heat Sink Air Cooled/Thermal Data

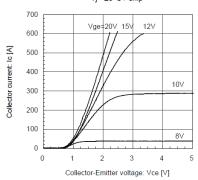
Data	Notes	Symbol	min	typ	max	unit
Airflow	See Typical Operating Conditions	$\Delta V/\Delta t_{Air}$		485		m³/hr
Air Pressure Drop		ΔP_{Air}		410		Pa
Cooling Air Inlet Temperature	Typical Operating Conditions are supported over this operating range, including Tmax.	T _{inlet}	-25	25	50	°C

Environmental Conditions

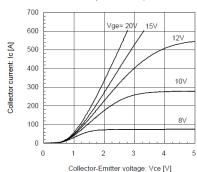
Data	Notes	Symbol	min	typ	max	unit
Storage Temp	Non-operational	T _{Stor}	-40		85	°C
Ambient Temp	Continuous Operation Note: different from Tinlet	T _{Amb}	-25		50	°C
Altitude above sea level	Derated operation possible above Alt Max	Alt			1000	m
Air Pressure	Standard Atmosphere	P _{air}	900		1100	hPa
Humidity	Non-condensing	Rel. F	5		85	%
Total Weight	Without capacitor			13		kg
Weight w/o Heat Sink	Without capacitor			7.6		kg
Dimensions	L x W x H (Without capacitor)		280	215	165	mm
Heat Sink Dimensions	LxWxH		280	215	80	mm
Torque at AC terminals		M _{AC}	16		20	Nm

Prepared by: Yueheng Guo	Version: v1.0
Approved by: Albert Charpentier	Effective Date: 2/14/2013

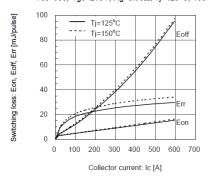
Level 3M: 100 kW DC-AC Inverter

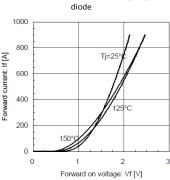

IGBT Module Data – Fuji 2MBI450VN-120-50

Module Maximum Ratings	Notes	Symbol	min	typ	max	unit
Collector-Emitter Voltage		V_{ces}			1200	V
Gate-Emitter Voltage		V_{ges}			20	V
Collector Current	Continuous	I _c	-300		300	Α
Collector Current	Pulse 1ms	I _{c_pulse}	-600		600	Α
Collector Power Dissipation	1 Device	P _c			2270	W
Junction Temperature	Maximum / Operating	T _j			175/150	°C
Isolation Voltage	Terminals to baseplate, 1 min	V _{iso}			2500	VAC


IGBT Data	Notes	Symbol	min	typ	max	unit
Collector-Emitter Saturation voltage	I_c =300A, V_{ge} =15V, T_j = 150°C	V_{ce_sat}		2.7		V
Parameter for linear model	T _j = 25°C	V _{ce1}		1.0		V
Parameter for linear model	T _i = 25°C	R _{ce1}		2.5		mΩ
Parameter for linear model	T _j = 150°C	V _{ce2}		0.95		V
Parameter for linear model	T _j = 150°C	R _{ce2}		3.9		mΩ
Thermal resistance junction to case		R_{thjc}			.094	K/W
Thermal resistance case to heat sink		R _{thch}			.0167	K/W

Diode Data	Notes	Symbol	min	typ	max	unit
Thermal resistance junction to case	For one device	R_{thjc}			.1	K/W
Thermal resistance case to heatsink	For one device	R_{thch}			.0167	K/W


Collector current vs. Collector-Emitter voltage (typ.) Tj= 25° C / chip


Collector current vs. Collector-Emitter voltage (typ.) Tj= 150°C / chip

Switching loss vs. Collector current (typ.) Vcc=600, $Vge=\pm15V$, $Rg=0.93\Omega$, $Tj=125^{\circ}C$, $150^{\circ}C$

Forward Current vs. Forward Voltage (typ.)

Prepared by: Yueheng Guo	Version: v1.0
Approved by: Albert Charpentier	Effective Date: 2/14/2013

Level 3M: 100 kW DC-AC Inverter

Controller Interface Data

Data	Notes	Symbol	min	typ	max	unit
Power Voltage Input		V _{in}	13	24	30	V
Power Input	V _{in} = 24V	P _{aux}			30	W
Driver board	See separate datasheet for details	AS2-Ec	onodual El	ectrical V1	5 2012-10-	26
Input Signal Logic Hi Level	10kΩ to Gnd, 1nF to GND	V _{in_hi}	11	15	17	V
Input Signal Logic Lo Level		V _{in_lo}	-0.5	.5	2	V
Digital Output Level	Open collector, low=ok, max sink: 15mA	V _{out}	0	-	30	V
Analog Output Format	0-10V, max source 15mA					
DC Voltage Measurement range	DC Voltage Corresponds to 0V to +12V	V_{dc_range}	0	-	1200	V
AC Current Measurement range	analog range	I _{ac_range}	-900	-	+900	Α
Temperature Measurement range	Current Output analog voltage is -12V to +12V, e.g. +6V = 450A, -6V = -450A Temperature output voltage is +7.25V to +8.25V, e.g. 100°C = +8V	T_{range}	-40	-	150	°C

Controller/Power to Interface Board (J1) Connectors Data

J1 Connector PINOUT Descriptions

Pin No	Signal	Pin No	Signal
1	SHIELD	2	BOT-HB1-IN
3	ERROR-HBI-OUT	4	TOP-HB1-IN
5	BOT-HB2-IN	6	ERROR-HB2-OUT
7	TOP-HB2-IN	8	BOT-HB3-IN
9	ERROR-HB3-OUT	10	TOP-HB3-IN
11	OVERTEMP-OUT	12	RESERVED / OPTIONAL RESET
13	VDC-LINK	14	VCC – +24V Supply Voltage
15	VCC – +24V Supply Voltage	16	+15V
17	+15V	18	GND
19	GND	20	TEMP-SENSE-OUT
21	Aux GND	22	I-SENSE1-OUT
23	Aux GND	24	I-SENSE2-OUT
25	Aux GND	26	I-SENSE3-OUT

J1 Connector Hardware

Connector	Туре	Manufacturer Part Number
Ribbon Cable	26 Pins	TE Connectivity 1658622-6
Interface Board	26 Pins	TE Connectivity 5499923-6

Prepared by: Yueheng Guo	Version: v1.0	
Approved by: Albert Charpentier	Effective Date: 2/14/2013	

Level 3M: 100 kW DC-AC Inverter

Protection / Faults

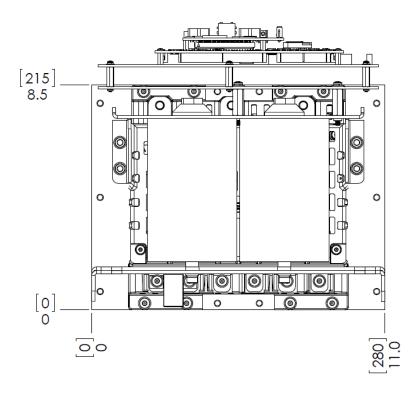
Fault Table

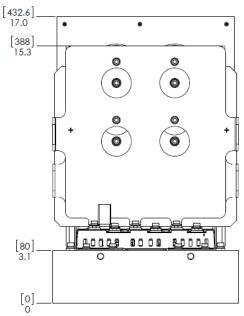
Fault Condition/Action	Generic Sample Default Trigger Values	Action on IGBT if Active
Desat - HI	>7 Volts for 6.1 µs*	Turn off HI side
Desat – LO	>7 Volts 6.1 μs*	Turn off LO side
HV Overshoot – HI	1080 Volts*	Active Clamping occurs
HV Overshoot – LO	1080 Volts*	Active Clamping occurs
UVLO – HI	<12 Volts	Turn off HI side
UVLO - LO	<12 Volts	Turn off LO side
Cross Latch/Shoot Through	Attempt to turn on both IGBTs	Does not allow turn on of inactive
2011 1 2 1	simultaneously	IGBT until active is off for 2 μs*
DC Link Overvoltage	1000 Volts*	Shut down all IGBTs
Overcurrent	400A	Shut down all IGBTs
Over Temperature	>125C	Shut down all IGBTs

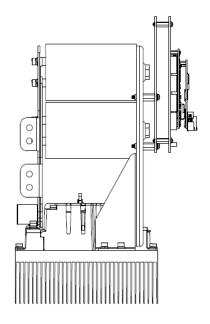
Certain parameters are configurable (noted by *).

Fault Reporting Pins (Configurable)

Fault Condition/Action	Pin 3	Pin 6	Pin 9	Pin 11
DSAT HB1	Х			
DSAT HB2		Х		
DSAT HB3			Х	
OVERCURRENT HB1	Х	Х	Х	
OVERCURRENT HB2	Х	Х	Х	
OVERCURRENT HB3	Х	Х	Х	
TEMP	Х	Х	Х	Х
DC LINK OV	Х	Х	Х	
UVLO	Х	Х	Х	


[&]quot;X" = possible to map this fault to this pin


Note: only 1 fault may be mapped to each pin


Prepared by: Yueheng Guo		Version: v1.0
	Approved by: Albert Charpentier	Effective Date: 2/14/2013

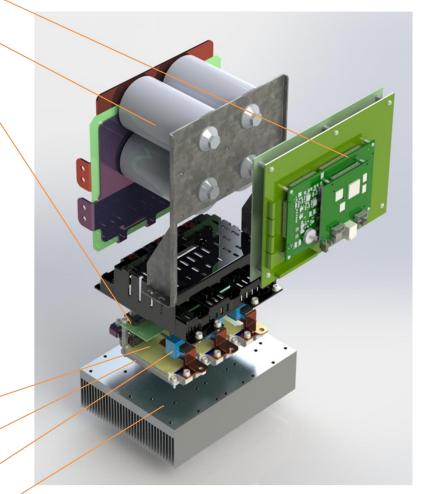
Level 3M: 100 kW DC-AC Inverter

Mechanical Dimensions

Prepared by: Yueheng Guo	Version: v1.0
Approved by: Albert Charpentier	Effective Date: 2/14/2013

Level 3M: 100 kW DC-AC Inverter

SmartPower Stack[™] Components


National Instrument Controller

Methode Capacitor Assembly

AgileSwitch Interface

AgileSwitch Gate **Drivers**

Fuji IGBTs

LEM Current Sensor

Methode Heat Sink

Prepared by: Yueheng Guo	Version: v1.0	
Approved by: Albert Charpentier	Effective Date: 2/14/2013	

Level 3M: 100 kW DC-AC Inverter

SmartPower Stack[™] Consortium

The SmartPower Stack Consortium consists of global leaders in controllers, IGBTs, gate drives, capacitors, bus bar architectures and cooling solutions that have joined to create the industry's first fully integrated, deployment-ready commercial embedded system for high-volume solar, photovoltaic, wind, hybrid electric and electric vehicles, as well as high capacity uninterruptible power supply and efficient motor drive applications.

As part of this effort, National Instruments supplies the controller, I/O, simulation and programming toolset, SBE provides new high performance wound film capacitors, Fuji supplies industry leading IGBTs, AgileSwitch offers leading edge IGBT gate drives and Methode offers state-of-the-art bus bar architectures, thermal management solutions, assembly and test capability.

Together, the five companies are creating fully integrated sub-system solutions for the power electronics industry with the highest performance for energy conversion inverters and convertor systems. This effort represents the industry's first collaboration of best-in-class technologies that are tightly integrated to deliver smart, efficient, reliable and long lasting power conversion.

7401 West Wilson Avenue Chicago, IL 60706-4548 www.methode.com mstibgen@methode.com

1650 Arch Street, #1905 Philadelphia, PA 19103 www.AgileSwitch.com info@AgileSwitch.com 11500 North Mopac Expressway Austin, TX 78759 www.ni.com brian.maccleery@ni.com

50 Northfield Avenue Edison, NJ 08837 www.americas.fujielectric.com

Legal Disclaimer

AGILESWITCH and the AGILESWITCH logo are trademarks or registered trademarks of AGILESWITCH, LLC in various countries. Fuji is trademark of FUJI ELECTRIC CO. Ltd. Methode is trademark of Methode Electronics, INC. SBE and Power Ring Film Capacitors are trademarks of SBE. National Instruments is trademark of National Instruments. SmartPower Stack is trademark of the SmartPower Stack Consortium. Any other names are the property of their respective owners.

Information in this document supersedes and replaces all information previously supplied. Specifications are subject to change without notice.

© 2010-2013 - All rights reserved.

Prepared by: Yueheng Guo	Version: v1.0
Approved by: Albert Charpentier	Effective Date: 2/14/2013