

Quick Start Guide Evaluation kit for digital humidity modules HYT 271, HYT 221 and HYT 939

Index

1. Description 1.1 Schematics	2 2
2. Compatibility 2.1 Input 2.1.1 Module HYT 939 2.1.2 Module HYT 271 and HYT221 2.1.3 All modules via extention cable	2 3 3 4 5
3. Power supply and outputs	5
4. Signal transmission4.1 Analog outputs4.2 Digital outputs4.3 Arduino IDE connection	6 6 7
5. Order information	8
6. Resources and download links	8
7. Disclaimer	9
8. Contact	9

1. Description

The purpose of this evaluation board is to facilitate the evaluation of HYT sensor modules for humidity and temperature. The evaluation board enables to connect a HYT module and if required convert its digital I²C signal into an analog voltage signal to test the module under the environmental conditions of the intended application. The output signals are proportional to the two parameters measured: relative humidity and temperature. The transmitter can also be connected directly to a PC via a USB cable for signal read-out and logging. The transmitter communication protocol is compatible with standard Arduino IDE software.

If additional mechanical protection during evaluation tests is required, the transmitter can be placed in a housing. It is compatible e.g. with the following housing type: RND 455-01083

1.1 Schematics

2. Compatibility

The evaluation board is compatible with all IST AG humidity modules of the HYT family.

HYT271 Material no. 153349

HYT 221 Material no. 103923

HYT939 Material no.103922

CSGH EvaKit HYT Modules E2.3.0.1

The material numbers refer to our standard versions, which are available in the IST AG webshop. For custom calibration or housing solutions please contact our customer service.

2.1 Input

For the communication between transmitter and HYT humidity module the digital I²C protocol is applied. The transmitter is pre-programmed to recognise a HYT module with the default I²C address 0x28. For information on how to change the I²C address of a HYT module, please refer to the HYT application note available from the IST AG website. Please note that no more than one HYT humidity module is to be connected to the transmitter at any given time.

Refer to Schematics (1.1) for position of the following ports:

Input Ports	Compatible Module
Socket 1	HYT 271 and HYT221
Socket 2	НҮТ939
Connector J2	All 3 module types via an extension cable*

* The recommended maximum length of the extension cable is 30 cm. The quality of signal transmittance depends on operational conditions and the cable material.

The following images show the correct orientation of the HYT modules in the socket along with the corresponding pin alignment of the modules.

SCL	I ² C SCL
VCC	Power supply
GND	Ground
SDA	I ² C SDA

physical. chemical. biological.

2.1.1 Modules HYT271 and HYT221

Input socket 1

gnd Sda

= GND = SDA

2.1.3 All modules via extension cable

Input connector J2

Please see pin assignment above. The recommended maximum length of the extension cable is 30 cm.

3. Power supply and outputs

The transmitter can be powered via USB cable from a PC or from a DC power source. Please refer to Schematics (1.1) for the position of the corresponding connectors.

Power supply requirements:	
USB	5 V
DC power source	4 to 15

4 to 15 V DC (ca. 50 to 300 mA)	
---------------------------------	--

Pin assignment of J1 connector:

Uh	Rel. Humidity, analog output 0-10V
GND	Ground
+U	Power supply PCB, input 4-15V DC
Ut	Temperature, analog output 0-10V

4. Signal transmission

4.1 Analog output

The analog voltage signals transmitted are directly proportional to the measured parameters. The following measuring and signal ranges represent the default HYT calibration:

Parameter	Output	Minimum	Maximum
Relative humidity	Uh	0% RH OV	100% RH 10 V
Temperature	Ut	- 40 °C 0V	+125 °C 10 V

The effectively measured values can be calculated according to the following formula:

Relative humidity	RH [%] = Uh [V] * 10
Temperature	T [°C] = Ut [V] * 16.5 - 40

4.2 Digital outputs

The measured values are transmitted via USB.

A terminal software such as PuTTY can be applied to read out and log data.

Start-up:

- 1. Connect a HYT humidity module to the correct port on the evaluation board. Refer to the corresponding pin assignments for the orientation (match SDA/ VCC/ GND/ SCL).
- 2. Connect the evaluation board to a PC using a USB cable.
- 3. Determine the COM Port number assigned (e.g. look for Arduino Micro in the Ports section of the Windows device manager)
- 4. Start the terminal software PuTTY.
- 5. Select Serial and enter the COM port number. Set Speed to 9600.
- 6. Click Open to connect the board.
- 7. In the empty window that appears, press the key "m" for measure. Measured values for relative humidity and temperature are displayed.

Functions:

m

l nnn

small "L"!

Single point measurement Start automatic measurement with set interval nnnn = interval in mSec. (e.g. I 1000 shall log a measurement every 1000 mSec, i.e. 1 second)

To stop an automatic interval measurement, press "m" again

Measurement data can be logged and exported in form of a log file from the PuTTY terminal.

4.3 Arduino IDE Connection

The Arduino IDE software allows to:

1. Read out data

2. Update or modify firmware

The Evaluation is supplied with the latest firmware version for direct use. No updates are required or recommended. Therefore, please avoid flashing the firmware of the board. Do NOT press the Upload button.

Please note that IST AG does not warranty any functionality of the evaluation board after any firmware modification performed by our customers.

To establish a connection with Arduino IDE, please apply following settings:

1. Go to Tools and select Board: Arduino Micro

Arduino 1.8.11 —				
ools Help				
Auto Format	Ctrl+T			
Archive Sketch				
Fix Encoding & Reload				
Manage Libraries	Ctrl+Shift+I			
Serial Monitor	Ctrl+Shift+M			
Serial Plotter	Ctrl+Shift+L			
WiFi101 / WiFiNINA Firm	nware Updater			
Board: "Arduino Micro"	2		Boards Manager	
Port	2		Δ	
Get Board Info	-		Arduino AVR Boards	
Programmer: "AVRISP m	ıklı"		Arduino Yún	
Burn Bootloader			Arduino Uno	
			Arduino Duemilanove or Diecimila	
			Arduino Nano	
			Arduino Mega or Mega 2560	
			Arduino Mega ADK	
			Arduino Leonardo	
			Arduino Leonardo ETH	
		•	Arduino Micro	
			Arduino Esplora	
			Arduino Mini	
			Arduino Ethernet	
			Arduino Fio	
			Arduino BT	

2. Select the Port marked with Arduino Micro

Innovative Sensor Technology

physical. chemical. biological.

 \times

3. Go to Serial Monitor (icon in the top	right
corner) to open a new window	

4. Check that the baudrate is set to 9600

📀 🗈 🔝 Upload		Serial Monito	r i
etch_nov24a			F
d setup() { / put your setup code here,	, to run once:		
d loop() { / put your main code here,			
@ COM22			×
		Sen	8
Autocorol Show timestamp	No line ending 🤍 9600	baud v Gear outpu	¢.

5. Enter m in the command line to start a single point measurement

COM22			
m			
Humidity:	19.93	Temperature:	26.12

5. Order information

Product description	Order code
Humidity evaluation board	151429
Humidity/temperature module HYT271	153349
Humidity/temperature module HYT221	103923
Humidity/temperature module HYT939	103922

6. Resources and download links

Visit www.ist-ag.com and go to the Download section for the following documents:

- Datasheets for individual humidity modules HYT271, HYT221, HYT939

- Application note with handling instructions for HYT modules

- Firmware for the evaluation board (published on www.ist-ag.com/download)

Terminal Software PuTTY: www.putty.org

For the latest Version of Arduino IDE please visit https://www.arduino.cc/ and follow the installation instructions.

Please note that additional libraries are required to compile custom firmware.

7. Disclaimer

The HYT evaluation board is designed solely for preliminary evaluation purposes and tests with IST AG's humidity modules from the HYT family under laboratory conditions. It is not suitable as an electronic component for any type of product. It remains an engineering board, and the electronic layout is subject to changes without prior notice.

8. Contact

Please contact IST AG for individually designed sensor solutions, including signal evaluation and housing. We will be happy to support you with the development and manufacturing of an OEM humidity module to fit your specific requirements.

Please visit our website and get in touch with IST AG for personal support: https://www.ist-ag.com/en/contact

We look forward advising you on the perfect sensor solution for your application!

Your IST AG Team

Innovative Sensor Technology IST AG Stegrütistrasse 14 9642 Ebnat-Kappel Switzerland info@ist-ag.com +41 71 992 01 00

Innovative Sensor Technology IST AG, Stegrütistrasse 14, 9642 Ebnat-Kappel, Switzerland Phone: +41 71 992 01 00 | Fax: +41 71 992 01 99 | Email: info@ist-ag.com | www.ist-ag.com

All mechanical dimensions are valid at 25 °C ambient temperature, if not differently indicated • All data except the mechanical dimensions only have information purposes and are not to be understood as assured characteristics • Technical changes without previous announcement as well as mistakes reserved • Load with extreme values during a longer period can affect the reliability • The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner • Product specifications are subject to change without notice • All rights reserved